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INTRODUCTION
Periodontal disease is a major global public health issue and 

the effective therapy has been a challenge [1]. The application of 
cell therapy seems to be a viable strategy to enhance periodontal 
tissue regeneration [2].  Bone marrow derived mesenchymal 
stem cells and periodontal ligament progenitor cells have been 
found useful for periodontal tissue regeneration [3,4]. Recently, 
three dimensional (3-D) scaffolds and supporting matrices 
with natural or synthetic materials have been used [5-8]. The 
synthetic materials although, show predictable and reproducible 
mechanical and physical properties, lack sites for tissue 
adhesion and may need chemical modifications [9]. Nonetheless, 
they appear to enhance cell colonization, proliferation and 
differentiation [7,10]. In this article we review the usefulness of 
PL progenitor cells in healing of the periodontal tissues.

PL Cell Labeling and Cell-Tracking

Periodontal tissue healing is limited by the fact that most 
periodontal ligament (PL) cells do not undergo renewal and 
have limited mitotic activity [11,12]. A number of treatment 
approaches have been developed to promote cell proliferation 
and differentiation [13,14]. Encouraging results have been 
obtained after transplantation of epithelial cells [15,16] 
however, these results have been difficult to interpret and to 
distinguish between the recruitment and differentiation of host 
and transplanted cells [17,18]. To overcome these difficulties, 
cell-tracking studies have been used to study the migratory 
behavior of lac-Z-positive cells transplanted into rat brain or 
adult rat liver [19,20]. These results have shown that this labeling 
method could be used in the periodontal tissues for assessing the 
fate and differentiation of transplanted cells. Wei et al. [4] have 
reported that labeled transplanted mesencymal stromal cells into 
periodontal defects of beagle dogs migrated through periodontal 
tissues and differentiated into osteoblasts and fibroblasts at 6 
weeks. 

Cell transplantation and tissue regeneration

The ex-vivo expanded Lac Z positive mouse mesenchymal 
PL and green fluorescent protein (GFP) and positive mouse 
embryonic stem (ES) cells transplanted at the periodontal 
wound-site in rats undergoing orthodontic tooth movement 
show enhanced capacity to differentiate to osteogenic and PL 
specific fibroblastic cell types with an increased number of 

BSP, OPN and α-SMA labeled cells in the PL of treated animals 
that received orthodontic tooth movement, 24 hrs followed 
with cell transplantation ( 21Nayak et al., 2008).  We have 
shown, Lekic et al. [22] that the transplanted cells migrate to 
alveolar marrow following a brief homing at the wound site; 
differentiate to osteopontin (OPN),  bone sialoprotein (BSP) and  
alpha smooth muscle actin (α SMA) expressing cell types in the 
PL after undergoing proliferation and initial differentiation in 
the alveolar bone marrow spaces. These cells then migrate to 
the periodontal wound site to regenerate the wounded PL and 
alveolar bone [22].  PL cells differentiated to osteogenic and non-
osteogenic cell types and also to other organ specific cell types 
such as kidney, lung, spleen, brain, heart and liver. However, the 
transplantation of PL cells had no significant effect on the heart 
and liver. Transplantation of PL and embryonic stem (ES) cells 
increased the density of cellular matrices in the PL significantly; 
the PL cells showed the maximum effect on the PL extracellular 
matrix proteins. There was a significant increase in the 
fibronectin expression in the PL in treated animals. Fibronectin 
is a multidomain dimeric glycoprotein with multiple biological 
functions including cell adhesion, cell migration, embryonic cell 
differentiation and maintenance of cellular cytoskeleton [23]. 
Notably, no sign of rejection was found due to xenografting [21]. 
We examined different organs in rat to see if there were tumors 
in major organs, but visual inspection did not detect any. The 
main finding was that PL cells transplanted in vivo are capable 
of differentiating into specific organ cell types, other than the 
periodontal tissues. The ES cells differentiated into a broader 
range of organ specific cell types including PL, alveolar bone 
(AB), central nervous system (CNS) and cardiomyocytes and had 
a pronounced effect on the intercellular matrices in many organs 
compared to PL cells. However, the PL cells had pronounced 
effect on the extracellular matrix proteins in PL. These findings 
correlate with previous studies in which the ES cells have shown 
to differentiate to lineage specific functional cell types including 
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cardiomyocytes [24-27], kidney cells [28] and air way epithelial 
tissues [29].  Poulsom et al. [30] have discussed the plasticity of 
adult stem cells suggesting that these cells may also give rise to 
different type of tissues other than the tissue of their origin.

Tissue specific differentiation of transplanted cells

Transplanted PL cells upon implantation migrate to alveolar 
marrow to home, proliferate and migrate Lekic et al. [22]. 
Interestingly the ES cells compared to the transplanted PL cells 
differentiated to a broader range of tissues and organ specific 
cell types that included cardiomyocytes, neuronal cell type, 
kidney tubular cells and Type II cells in the lung. Courax et al. 
[29] have also reported the differentiating ability of ES cells to 
air way epithelial tissues. The PL cells showed a higher degree 
of differentiation in the PL tissue environment as determined by 
the expressions of the cell differentiation markers such as OPN, 
BSP and alpha smooth muscle actin. The possible explanation 
for this is that the PL cells are at a more advanced state of 
differentiation than the ES cells. The ES cells are found to be 
more primitive progenitor cells carrying lineage specific genetic 
blue print that result in larger number of organ specific cell types 
[29]. To replace periodontal ligament cells in case of periodontal 
diseases or injury, the PL mesenchymal cells are more suitable 
than the ES cells. For other type of transplantation, for example 
myocardial diseases, the ES cells may be better suited over the 
PL cells. Results of this study support the findings of Bussolati 
et al. [31] that the stromal mesenchymal cells isolated from the 
target tissue or organ may in fact be effective, transplantable 
cells for its own regeneration.  Based on our very recent data this 
statement is generally true but there are exceptions. For example 
the transplantation of stem cells isolated from the kidney 
underwent less differentiation into kidney tubular cells than the 
transplanted spleen cells (data not published). 

The transplantation of ES cells resulted in a localized 
distribution of OPN, BSP and STRO-1 labeled cells in the PL. 
STRO-1 is a marker for stromal cell in bone marrow and STRO-1 
positive cells which are capable of differentiating to functional 
osteoblasts [32] and have potential to generate cementum/PL like 
structures [33].  It is of no surprise that a significant number of 
STRO-1 positive cells were found in the bone marrow of animals 
receiving PL cell transplantation and undergoing orthodontic 
tooth movement. This may suggest that the marrow may contain 
pre-mesenchymal cells, which are activated as a result of 
transplantation. Recently, Seo et al. [33] have also reported that 
the PL stem cells express mesenchymal stem cell marker STRO-1 
and CD 146 (MUC 18/s-endo). The latter marker has been shown 
to be expressed in human endothelial cells but absent from 
haemopoietic cells [34]. McKay et al. [35] have reported that the 
mesenchymal cells differentiate to chondrogenic lineage when 
cultured without serum in the presence of a transforming growth 
factor. Pittenger et al. [36] have reported that the mesenchymal 
stromal cells when cultured in the presence of dexamethasone 
and ascorbic acid differentiated to alkaline phosphatase positive 
osteogenic cell types.

The ES cells were more readily differentiable to 
cardiomyocytes than the PL cells. Mummery et al. [25] have 
shown that mouse and human embryonic stem cells differentiate 

into cardiomyocytes. Several pyramidal cells in the cerebrum of 
treated animals were strongly OPN positive. Iczkiewicz et al [37] 
has reported the presence of OPN in the basal ganglia, however, 
the exact function of OPN in the CNS is not known. Recently, Stier 
et al. [38] showed that OPN is a hematopoietic stem cell niche 
component that negatively regulates stem cell pool size Yoon et 
al. [39].

A group of PL fibroblasts, which were positive to anti-
macrophage antibody (ED1) at one end and negative on the 
other end, may represent a subset of specialized fibroblast cell 
populations in the PL, that engage in collagen synthesis via 
Golgi-endoplasmic reticulum and collagen breakdown via a 
phagosome-lysosome pathway. ED 1 is a lysosomal membrane 
antibody that has high affinity for mononuclear and multinuclear 
inflammatory cells of macrophage-phagocytic lineage [40]. 
The dual functioning fibroblasts may be a specialized group of 
cells, which are responsible in maintaining the collagen content 
of the PL. Le Hir and Kaissling [40], have reported antibodies 
against macrophages that overlap in specificity with fibroblasts. 
Collectively, results from this study may suggest that the PL or 
ES cells are capable of differentiating into osteogenic cell types 
as well as other tissue and organs specific cell types. Findings 
that mesenchymal cells are capable of differentiating into 
tissue/organ specific cell types in vivo make these cells very 
valuable in biotherapy of wounded tissues and organs. Overall, 
transplantation of undifferentiated PL progenitor/stem cells 
may successfully be used to treat injured/damaged periodontal 
tissues and other organ specific diseases.

FUTURE STUDIES
Although there has been significant research done to 

understand the effects of various growth factors, cytokines, 
hormones and transcription factors including mechanical force 
on the differentiation of stromal stem/progenitor cells, the 
information on the fate and differentiation of lineage committed 
transplanted cells and their ability to regenerate periodontal 
wounding is limited. Whether differentiated adult cells have 
the necessary cues to differentiate to other cell types require 
further research. If these cells can be induced in vitro in culture 
conditions to a state of stable differentiation, using a variety of 
growth and differentiation-promoting factors including hydrogel 
and scaffolds and synthetic materials such as poly (epsilon-
caprolactone) or fibrin scaffold and can lead to stable terminal 
differentiation in vivo, then they can be useful in cell therapy. 
Recent reports that the transcription factors play a significant 
role in controlling the differentiation of periodontal stromal 
progenitor cells as well as maintaining the balance between 
the proliferation, apoptosis and differentiation also require 
further research. Many work on transplanted mesenchymal 
stem cells show that extensive cell loss occurs after one week 
of transplantation.  This problem may be overcome by using   
composite hydrogel [41]. 
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